Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Targets ; 28(1-2): 83-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235574

RESUMO

BACKGROUND: Ovarian cancer (OC) is the most lethal gynecological tumor, but it currently lacks effective therapeutic targets. CD147, which is overexpressed in OC, plays a crucial role in promoting malignant progression and is associated with poor prognosis in patients. Therefore, CD147 has been identified as a potential therapeutic target. However, there is a limited amount of research on the development of CD147 inhibitors. METHODS: Surface plasmon resonance (SPR) assay and virtual molecular docking analysis were performed to identify potential natural compounds targeting CD147. The anti­tumor effects of myricetin were evaluated using various assays, including CCK8, Alkaline comet, immunofluorescence and xenograft mouse models. The underlying mechanism was investigated through western blot analysis and lentivirus short hairpin RNA (LV-shRNA) transfection. RESULTS: Myricetin, a flavonoid commonly found in plants, was discovered to be a potent inhibitor of CD147. Our findings demonstrated that myricetin exhibited a strong affinity for CD147 and down-regulated the protein level of CD147 by facilitating its proteasome-dependent degradation. Additionally, we observed synergistic antitumor effects of myricetin and cisplatin both in vivo and in vitro. Mechanistically, myricetin suppressed the expression of FOXM1 and its downstream DNA damage response (DDR) genes E×O1and BRIP1, thereby enhancing the DDR induced by cisplatin. CONCLUSION: Our data demonstrate that myricetin, a natural inhibitor of CD147, may have clinical utility in the treatment of OC due to its ability to increase genomic toxicity when combined with cisplatin.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Basigina/genética , Proliferação de Células
2.
Heliyon ; 9(9): e19760, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809574

RESUMO

Ovarian cancer is insensitive to immunotherapy and has a high mortality rate. CDK4/6 inhibitors (CDK4/6i) regulate the tumor microenvironment and play an antitumor role. Our previous research demonstrated that lymphocyte aggregation (tertiary lymphoid structures, TLSs) was observed after CDK4/6i treatment. This may explain the synergistic action of CDK4/6i with the anti-PD1 antibody. However, the key mechanism by which CDK4/6i promotes TLS formation has not been elucidated. We examine the link between TLS and prognosis. Animal models and high-throughput sequencing were used to explore the potential mechanism by which CDK4/6i promotes TLS formation. Our results showed the presence of TLSs was associated with a favorable prognosis for ovarian cancer. CDK4/6i promoted TLS formation and enhanced the immunotherapeutic effect of the anti-PD1 antibody. The potential mechanism of CDK4/6i affecting the formation of TLS may be through modulating SCD1 and its regulatory molecules ATF3 and CCL4. Our findings provide a theoretical basis for the application of CDK4/6i in ovarian cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...